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Abstract
Multicore systems parallelize to accommodate incoming

Ethernet traffic, allocating one receive (Rx) ring with ≥1Ki
entries per core by default. This ring size is sufficient to absorb
packet bursts of single-core workloads. But the combined size
of all Rx buffers (pointed to by all Rx rings) can exceed the
size of the last-level cache. We observe that, in this case, NIC
and CPU memory accesses are increasingly served by main
memory, which might incur nonnegligible overheads when
scaling to hundreds of incoming gigabits per second.

To alleviate this problem, we propose “shRing,” which
shares each Rx ring among several cores when networking
memory bandwidth consumption is high. ShRing thus adds
software synchronization costs, but this overhead is offset by
the smaller memory footprint. We show that, consequently,
shRing increases the throughput of NFV workloads by up
to 1.27x, and that it reduces their latency by up to 38x. The
substantial latency reduction occurs when shRing shortens the
per-packet processing time to a value smaller than the packet
interarrival time, thereby preventing overload conditions.

1 Introduction
Software systems drive Ethernet NICs through producer-
consumer “rings.” A ring is a logically circular memory array
shared between software and NIC, such that each ring entry
points to a buffer big enough to store an Ethernet packet. Soft-
ware sends data by placing packet buffers in a transmission
(Tx) ring, thereby handing them to the NIC to be sent. Soft-
ware receives data by removing packet buffers from a receive
(Rx) ring after they have been filled by the NIC, immediately
replacing them with free buffers to be used in their stead
for future incoming traffic. Thus, Rx rings are always fully
populated with (free or filled) buffers, whereas Tx rings are
commonly partially populated or empty. Consequently, Rx
rings are more memory-consuming than Tx rings.

By default, a receive ring consists of ≥1Ki entries [11, 21,
60, 65, 86, 86, 92], each pointing to a 1500B buffer, Ethernet’s
maximum transmission unit (MTU) [36]. A typical Rx ring
thus requires (1Ki × 1500B ≈) 1.5MiB. NICs support hun-
dreds of such rings [12, 50, 66, 71], which software uses for
synchronization-free parallelism, assigning different rings to
different cores in both kernel [30, 33, 68, 77, 82, 84, 90] and
user [2, 8, 24, 38, 52] network stacks. The combined size of
Rx buffers across all cores—henceforth denoted as α—can
therefore reach tens of MiBs, which might be bigger than the

last-level cache (LLC). Notably, α constitutes a lower bound
for the size of the NIC working set [25], as the NIC sequen-
tially operates on all Rx buffers, one after the other, so all
buffers in the circle must be used before they can be re-used.
As a result, α exceeding LLC capacity can be problematic for
high-throughput, low-latency workloads that sustain network
traffic of up to hundreds of gigabits per second (Gbps).

The problem stems from these workloads relying on data
direct I/O (DDIO) [20] technology or similar. DDIO allows
NIC direct memory accesses (DMAs) to read and write pack-
ets to and from the LLC while avoiding high main memory
access costs [15,29,63,64,78,79,87,91]. But an α larger than
the LLC undermines DDIO’s effectiveness, as the NIC work-
ing set is too big to be cached. Consequently, CPU memory
accesses become slower, contending with DMAs for insuffi-
cient cache capacity. Accesses are thus increasingly served by
main memory, making the per-packet processing time longer.
This overhead translates to degraded throughput and latency
of networking workloads that experience the memory as a
bottleneck resource.

We exemplify this problem in §2, using run-to-completion
systems [6, 26, 35, 52, 58, 69, 73] common in microsecond-
scale workloads like network function virtualization (NFV).
In these systems, each thread of execution consists of a loop
that iteratively polls an Rx ring, receives a packet from the
wire, processes it to completion (without context switches or
interrupts interfering), and then sends a response.

In §3, we consider addressing the problem by reducing the
size of Rx rings [91]. We find that a size smaller than 1Ki
might cause a core to experience many more packet drops
when the incoming traffic targets this specific core. For exam-
ple, a core may sustain 2x more packets without drops using
1Ki entries instead of 128. (Increasing Rx sizes beyond 1Ki
has no benefit in our workloads.) In contrast, in multicore
setups, using 128 entries per Rx ring reduces α without incur-
ring additional drops, provided the incoming traffic is evenly
spread between the cores, which curbs the traffic and bursts
that each individual Rx ring experiences.

Motivated by this finding, in §4, we propose “shRing,” a
system that alleviates the above problem by sharing a 1Ki-
sized Rx ring between a set of N cores. ShRing satisfies the
simultaneous needs of all sharing cores when incoming traffic
is even or uneven. Sharing balances buffer usage, allowing
cores that sustain heavier traffic to utilize more Rx entries at
the expense of cores sustaining lighter traffic while keeping
α small.



ShRing is advantageous if (1) cache misses due to ineffec-
tive DDIO usage cause non-negligible overhead, and (2) the
workload avoids pathologically imbalanced conditions, where
a subset of the sharing cores are continuously overloaded
while their peers are underloaded. (NFV studies commonly
assume non-pathological conditions [4, 10, 26, 59, 63, 73, 75,
76, 97], which might indicate the system is misconfigured.)
If DDIO usage is effective, then shRing’s synchronization
overhead might degrade the performance, and if the workload
is pathologically imbalanced, then the overloaded cores might
monopolize all the entries of the shared ring. ShRing thus
dynamically identifies the above two conditions, and it turns
itself on or off accordingly.

When operational, shRing boosts LLC hits by shrinking
the working set, which reduces the per-packet processing
time (Pt) and thus increases throughput. If shRing’s shorter
Pt becomes smaller than packet interarrival time (It ), queuing
theory dictates that ring occupancy drops from full to empty,
dramatically shortening latency from linear in the ring size to
essentially Pt . But even if shRing’s Pt remains greater than It
(ring fully occupied, so latency is linear in ring size), latency
still improves by a factor of 1/N, as the per-core Rx ring size
is effectively 1/N smaller, being shared by N cores.

Shared data structures commonly underperform due to soft-
ware synchronization overhead [9, 22, 26, 55, 80, 90]. ShRing
reduces this overhead by avoiding synchronization when de-
ciding which core will process which newly arriving packet.
By using per-core completion rings (CRs), the NIC spreads
incoming packets between cores, adding the integer index
of each packet’s entry to the CR of the core that owns the
packet [37]. Cores still require synchronization when notify-
ing the NIC that ring entries can be reused. ShRing bounds
this overhead by limiting N, the number of sharing cores. We
use N=8, but other values may be preferable in other setups.

We explore two shRing variants. The first, “RxArr,” is a
shared cyclic Rx array structured similarly to a private ring.
Because it is shared, its packet buffers routinely become ready
for reuse out of (array) order, as they are processed by dif-
ferent cores. The problem is that, for correctness, RxArr is
permitted to notify the NIC that entry i can be reused only
after all preceding entries (such as i-1) are likewise made
reusable. This constraint necessitates coordination between
cores, which increases the overhead of synchronization.

Our second shRing variant, “RxList,” simplifies coordina-
tion by turning the shared ring into a linked list using a “next”
field added to Rx entries. When storing incoming packets, the
NIC follows list (rather than array) order. This change allows
cores to make entries immediately available for NIC reuse;
they no longer have to wait for preceding entries. We find,
alas, that RxList performs poorly, as the linked list structure
undermines the NIC’s ability to prefetch Rx entries, ruling
this design out for the time being. We propose a modest NIC
ASIC modification that resolves this problem (but prevents
us from experimentally evaluating this improved design).

We demonstrate in §5 that RxArr shRing works as expected,
improving NFV macrobenchmark throughput by up to 1.27x
and latency by up to 38x. In §6, we experimentally show that
our findings are also applicable to more traditional applica-
tions that use kernel-based TCP sockets. Finally, we discuss
related work in §7 and conclude in §8.

2 Motivation

We begin by providing the necessary background (§2.1) and
by characterizing the problem that shRing tackles, which is
the increasing working set size of the NIC as compared to the
LLC size (§2.2). We then experimentally demonstrate how
this problem affects performance as well as shRing’s ability
to address its root cause (§2.3).

2.1 Background
Interacting with NICs Software and Ethernet NICs interact
via logically cyclic producer-consumer queues called rings.
The roles of producer and consumer depend on perspective:
for received (Rx) traffic, the NIC can be viewed as producing
incoming packets that software consumes; alternatively, soft-
ware can be viewed as producing free buffers that the NIC
consumes by filling them with incoming data. Transmitted
(Tx) traffic can be viewed similarly. Software chooses the
ring size and allocates it in main memory. The entries of a
ring are architected descriptor structures consisting of several
fields, one of which is a pointer to packet buffer.

Software pre-allocates packet buffers for all Rx descriptors.
Each buffer can hold MTU bytes (≈1500 by default). When a
packet arrives, the NIC DMA-writes it to the buffer pointed
to by the tail descriptor of the Rx ring (“next free” index),
incrementing the tail to point to the subsequent descriptor if
the tail does not surpass the head ring descriptor. Symmetri-
cally, software dequeues Rx packets for processing from the
head descriptor (“next full” index), iteratively incrementing it
so long as it does not surpass the tail; software replaces the
current head’s buffer, which the NIC has just filled, “reposting”
a new free buffer instead and informing the NIC about this by
“ringing the doorbell” (writing to a NIC register).

Tx traffic occurs similarly, with NIC and software flipping
roles (NIC responds to software actions rather than the other
way around). Thus, in contrast to the Rx case, Tx ring descrip-
tors are initially empty and therefore consume less space.

A ring’s head and tail are maintained as consumer-
and producer-controlled registers, residing in NIC memory
mapped I/O (MMIO) and holding ring indexes. Software may
configure the NIC to trigger an interrupt when it updates a
register, or it may instead poll the ring and observe changes.

The NIC distributes incoming traffic load between mul-
tiple Rx rings, and therefore between multiple cores, using
receive side scaling (RSS [68], which computes a hash over
the packet’s header to produce a ring identifier) or accelerated



receive flow steering (ARFS [90], which consults software-
controlled packet steering tables).

NFs In this work, we mostly focus on improving the per-
formance of network function (NF) workloads. NFs are
packet-processing applications that were once implemented
using rigid proprietary hardware middleboxes and are now
increasingly implemented with software on off-the-shelf
servers [4, 23, 26, 27, 53, 54, 58, 74]. Common NF examples
include switches, routers, firewalls, virtual private networks
(VPN), deep packet inspectors (DPI), network address trans-
lators (NAT), and load balancers (LB). Evidence suggests
that nearly 60% of all data center network traffic relies on
NFs [74].

To attain high throughput and low latency, NFs commonly
employ a packet processing model based on kernel bypass
and direct NIC access [4, 23, 27, 53, 58] as provided by, e.g.,
the data plane development kit (DPDK) [51]. To improve effi-
ciency and minimize overheads, this model typically foregoes
abstractions like blocking I/O, context switching, and multi-
tasking. Instead, it is designed as a simple run-to-completion,
polling system, which does away with costly device interrupts
as means of driving networking activity. Thus, each NF thread
T gets its own dedicated core and rings. T continuously polls
its Rx ring, and when a packet arrives, T processes the packet,
generates a response, sends the response by placing it in its
Tx ring, and resumes its Rx polling.

DDIO High-throughput, low-latency apps like NFs benefit
from Intel’s direct data I/O (DDIO) technology [20] (other
processor vendors support similar technologies [5,93]). When
possible, DDIO satisfies DMA operations from the LLC rather
than main memory, which is faster/cheaper and may thus im-
prove throughput and latency. Specifically, DDIO services
DMA reads from the LLC if the target data is already there,
which, in addition to being faster, also reduces memory band-
width contention. Symmetrically, DDIO can perform DMA
writes directly to the LLC instead of to main memory by ei-
ther overwriting existing LLC lines, if they reside in the LLC,
or by allocating new lines in up to two LLC ways.

2.2 The Problem: I/O Working Sets
Let the I/O working set be the memory area that an I/O device
(e.g., NIC) reads/writes via DMA in a given time interval. For
NFs, this set should preferably fit in the LLC due to DDIO. An
I/O-intensive workload whose I/O working set size exceeds
(or even approaches) LLC capacity implies: that I/O-related
data likely competes for cache capacity; that DMAs are thus
increasingly served by main memory instead of the LLC;
and that LLC contention and memory bandwidth bottlenecks
might occur as a result [15, 29, 63, 64, 78, 79, 87, 91].

Rx ring size is a key factor in determining the I/O work-
ing set size. Recall that all Rx descriptors are pre-populated
with MTU (1500B) packet buffers upon startup. Subsequently,
whenever software replenishes the ring’s head descriptor with

Intel gen. max ring default Xeon
year NIC (GbE) num. (rm) size (s) CPU LLC cores
2001 [40] 1 1 256 [41] 256 KiB 1
2007 [42] 10 64 512 [43] 12 MiB 4
2014 [46] 40 1536 512 [45] 38 MiB 15
2020 [49] 100 2048 2048 [48] 77 MiB 56

Table 1: The first Intel NIC model in each GbE generations shown
alongside the Intel CPU launched at the same year whose LLC was
the largest in that year. The number of supported NIC rings and the
default ring size are increasing.

a free buffer B, the head-tail protocol (§2.1) dictates that the
NIC will DMA-write a new packet to B only after the associ-
ated Rx ring tail wraps around back to B’s position. Thus, the
aggregate Rx size (denoted α) serves as a lower bound for the
I/O working set. If software utilizes r Rx rings of size s, then
this lower bound is α = r× s×1500B.

The problem that motivates our work is that α grows faster
than the LLC and nowadays routinely exceeds it, with Rx
rings increasing both in number (r) and size (s). Underly-
ing this phenomenon are, notably, the following technology
trends. NIC throughput has been growing faster than CPU
packet processing speed for over a decade [32,87]. The higher
bandwidth increases variability and necessitates bigger net-
work queues [28, 47, 94]. Moreover, the ever-growing traffic
volume implies that the days when a single CPU core was
able to drive an Ethernet NIC to its full capacity are long
gone [31]. Thus, modern systems must employ multicore par-
allelism [9, 22, 26, 80, 90]. NICs have therefore evolved to
offer multiple Rx/Tx rings, allowing each core to interact with
the NIC through its own private ring instances in isolation.
We refer to this architecture as privRing.

To demonstrate the rapidly increasing α phenomenon
(along with the underlying technology trends), we collected
the ring maximal number (rm) and default size (s) from the
datasheet and driver, respectively, of every Intel NIC model
released during 2000–2022. Table 1 shows a representative
summary; to conserve space, we only include the first NIC of
each Ethernet generation with increasing throughput. Early
1GbE NICs supported only a single ring, but as multicore
CPUs became more common, subsequent 1GbE NICs sup-
ported up to 16 rings (not shown). Later, the first generation of
10GbE, 40GbE, and 100GbE respectively introduced support
for 64, 1536, and 2048 rings.1 The default ring size likewise
increased from 256 to 2048. Network stacks and libraries
adopt similar sizes. For instance, the default Rx ring size in
all sample apps in the DPDK library is currently 1024 [60].

The right side of Table 1 matches each NIC with an Intel
CPU model launched at that year, whose LLC was the largest

1It makes sense for r to be much bigger than CPU core number in order
to support, e.g.: per-application rings [38, 95]; per-container rings [2, 24];
a ring for every SRIOV [44] instance of every virtual CPU of every virtual
machine that runs on the host machine [82, 84]; and a hypervisor ring per
VM ring for fallback when flow rule offloading is not yet configured [33,77].
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Figure 1: Aggregate Rx size (α = r× s×MTU) grows faster than
LLC size and has already exceeded it in even the most minimalist
configuration (based on data from Table 1).

at the time. Using this data, Figure 1 plots the size of the
LLC and the minimal and maximal α of the associated NIC.
We see that the maximal aggregate Rx size (assuming all rm
supported rings are used) was always too big to fit in the LLC
size in this time range. But in 2020, the aggregate Rx size
of even the most minimalist configuration—just one Rx per
core—became too big. This is the source of the problem.

The situation is exacerbated if considering logical, rather
than physical cores (the 4.3x in the figure would have become
8.6x). We predict that this trend will continue, as upcoming
NICs will bring more features (and queues), with speeds of
up to 800 GbE expected in 2025 [13, 14].

2.3 Implications
Assume that the I/O working set size of some NF exceeds
the LLC capacity and/or the LLC space it needs for satisfy-
ing DMA-writes of incoming data (constrained by DDIO to
only two ways per LLC set by default) is insufficient. In this
case, we claim that the overhead is significant to the point
that it may be preferable to abandon dedicated private rings
(privRings) in favor of shared rings (shRings), despite the
synchronization cost associated with the latter.

To demonstrate, we use a synthetic FastClick NF mi-
crobenchmark configured to iteratively receive a packet, ac-
cess an array, perform routing, and send the packet out [8].
The NF uses all (16) cores of our 2.1 GHz CPU, experiencing
a theoretical incoming load of 200 Gbps of MTU packets (line
rate), which in practice is 195.6 Gbps (due to 34B Ethernet
overhead for each 1500B MTU packet). We execute this ex-
periment using the baseline privRing, as well as three shRing
variants that unify the rings of 2, 4, and 8 cores, respectively
denoted as shRing/2, shRing/4, and shRing/8. (The full de-
tails of shRing are specified in §4, and the full details of the
experiment are specified in §5.)

Figure 2a distills our case. It shows the average number
of cycles it takes to handle one packet, breaking it down to
synchronization overhead (“sync”) vs. actual processing time
(“orig”). While synchronization overheads are substantial and

increase with the level of sharing, we see that it is nevertheless
advantageous to pay the cost, as cycles-per-packet improves
by about 4% each time we halve the I/O working set size.

The NF throughput, shown in Figure 2b, is approximately
inversely proportional to cycles-per-packet (Figure 2a) as long
as the CPU constitutes a bottleneck resource and line rate is
not yet attained. Specifically, let C denote the average number
of cycles required to process one packet, let hz (=2.1 GHz)
denote the cycles-per-second clock speed of the CPU, and let
n (=16) denote the number of running CPU cores, then n× hz

C
is the number of packets that the CPU handles per second,
and so Gbps(C) = 1500B × 8bit × n × hz

C is the throughput.
Using this equation, we can compute Cbdgt , the budget of

per-packet cycles that the system must meet to achieve the
195.6 Gbps line rate (denoted “bdgt” in Figure 2a) as follows:
Cbdgt = 1500B × 8bit × n × hz / 195.6 Gbps = 2061 cycles
per packet. Only shRing/8 meets the budget here.

We have argued that the reason underlying shRing’s im-
proved performance is its smaller I/O working set, which
curbs memory bandwidth consumption by increasing cache
efficiency. This argument is directly supported by Figures 2c
(memory bandwidth) and 2d (LLC misses as experienced by
both CPU and NIC). In the latter figure, we see that privRing’s
NIC PCIe miss rate is as high as 85%, which is why privRing’s
average NIC PCIe read latency grows to 1.45 µs (Figure 2e).
Such a long PCIe latency is enough to saturate the DMA
engines within the NIC (designed to hide PCIe latency with
parallelism), and so it hampers the NIC’s ability to quickly
process rings, which in turn generates high ring occupancy of
94% on average (Figure 2f). The implication is that, on aver-
age, each privRing packet P must wait for 966 packets (=94%
of ring size) to be processed before P is finally processed
itself, which explains privRing’s high latency (Figure 2g).

In contrast, shRing/8’s occupancy is small, as it meets the
Cbdgt budget and so its processing rate (µ) is larger than the
arrival rate (λ). Because µ > λ, latency is much lower. Even
when shRing does not meet the Cbdgt budget (the /2 and /4
variants), it improves latency, as its per-packet processing
time is lower than in privRing.

3 Fewer or Smaller Private Rings

Conceivably, we can reduce the I/O working set size without
ring sharing in two straightforward ways. One can use much
smaller per-core Rx rings, or one can employ a single core (us-
ing a bigger Rx ring) as the system’s centralized “dispatcher”
for all incoming traffic. Here, we briefly explain why neither
is satisfactory for high-bandwidth networking applications.

The single-core, single-ring centralized dispatcher ap-
proach is used by such systems as Shinjuku [57] and
Shenango [72]. It can be an effective way to reduce I/O mem-
ory consumption, and it has been shown to work well for
NIC bandwidth of up to 40 Gbps. But more powerful NICs
might not be served well by this approach, as the dispatcher’s
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Figure 2: ShRing’s synchronization costs are significant but are nevertheless worthwhile, as they are cheaper than the overheads associated
with privRing’s larger I/O working set. When shRing’s cycles-per-packet meet the line rate budget (a), its packet processing rate exceeds the
packet arrival rate, generating low occupancy in the ring (f) and thus substantially reducing the latency (g).

limited compute capacity becomes a bottleneck [31].
The other potential approach, of reducing the size of all

rings while retaining the ring-per-core design, is compatible
with multicore parallelism. But we contend that the existing
ring size is necessary and that reducing it has negative reper-
cussions. To illustrate, we run the standard RFC2544 no-drop
rate (NDR) test [10] with DPDK Layer-3 MTU packet for-
warding (l3fwd) on 8 cores. This test finds the maximum
throughput attainable without loss. We run it once with traffic
evenly spread across the cores (“multicore”) and again with
traffic directed at one of them (“single core”).

Figure 3a shows that small rings work well for multiple
cores if traffic is evenly spread between them, curbing the
load and bursts that each core/ring experiences, which allows
the fewer Rx buffers to cope. But small rings cease to deliver
when traffic is uneven: the overloaded (“single”) core’s ring
overflows and causes packet drops if it is smaller than 1Ki. In
contrast, Figure 3b shows that one shared 1Ki-ring is enough
to sustain optimal NDR of either 8 competing cores (each
using 128 entries on average) or just one overloaded core,
as shRing allows more loaded cores to use more Rx entries
at the expense of their less loaded peers that are adequately
served by fewer entries at that particular time.

4 ShRing’s Design and Implementation

ShRing is an architecture for driving high bandwidth NICs. In-
stead of using private per-core default-sized Rx rings, it shares
each default-sized Rx ring between a set of cores. (ShRing
leaves the Tx path unmodified.) ShRing can improve through-
put, latency, or both, depending on the workload (§4.1).

Sharing a receive ring among cores requires us to syn-
chronize the ring accesses of the CPU (using locks or
atomic instructions), which incurs overhead compared to the
synchronization-free privRing. ShRing curbs this overhead
by limiting the number of cores sharing a ring to N; we use
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Figure 3: DPDK l3fwd no-drop rate. Small privRings work well
when traffic is evenly spread across cores but cause drops otherwise.
ShRings work well in both cases at a fraction of the buffer size.

N=8, but other values may work better for other setups. Also,
shRing reduces synchronization overhead by leveraging per-
core completion rings (CRs) with which the NIC spreads
incoming packets between cores [37], ridding them from hav-
ing to compete for newly arriving packets (§4.2). As a result,
shRing’s benefits outweigh its synchronization costs for work-
loads that suffer from ineffective DDIO use.

We propose two shRing designs that represent the ring as
an array (RxArr, §4.3) or a linked list (RxList, §4.4). Both
can be implemented with recent NVIDIA NICs. RxArr’s syn-
chronization is costlier, but RxList’s interferes with the NIC’s
Rx entry prefetching, so we rule it out (but propose a modest
NIC ASIC modification that will fix this problem).

ShRing dynamically turns itself on/off depending on
whether or not the workload is benefiting from it (§4.5). We
describe the implementation details in §4.6.

4.1 Benefits and Constraints
ShRing can improve throughput and/or latency, depending
on the workload. Next, we define the workload properties



necessary for shRing to be advantageous, and we explain the
expected benefits of shRing and how it provides them. When
shRing is counterproductive (necessary properties are absent),
it dynamically disables itself.

ShRing is relevant only for workloads that avoid patholog-
ical core overload, where a subset of the sharing cores are
continuously overloaded while their peers are underloaded.
Pathological conditions may occur due to continuous, highly
skewed per-packet processing time differences, or because of
chronic incoming traffic imbalance. For reasons detailed later
on (§4.5), when cores share a ring under pathological condi-
tions, the fact that only some of them are overloaded implies
that the packets of the overloaded cores increasingly and dis-
proportionately accumulate within the ring, to the point that
no room is left for packets of underloaded cores. This pathol-
ogy causes new packets directed at underloaded cores to get
dropped despite there being available processing capacity.

We term these conditions “pathological” because (1) they
are suboptimal and may indicate the system is misconfigured,
and (2) they are atypical when measuring NFV performance,
as many NFV studies [4,26,63,73,75,76,97] and IETF bench-
marking methodology [10] generate packet headers using
randomization, balancing load across cores with hash-based
packet spreading (e.g., RSS).

Throughput ShRing improves a workload’s throughput if
(1) its I/O working set with privRing exceeds the LLC DDIO
capacity and (2) the penalty of the resulting cache misses
is non-negligible compared to the overall packet processing
time. Relative to privRing, shRing multiplicatively decreases
the number of rings by a factor equal to the number of cores
sharing each Rx ring (N=8 in our case). This decrease results
in a corresponding 1/N reduction of the I/O working set,
possibly to below the LLC DDIO capacity. ShRing therefore
mitigates and possibly eliminates the I/O-related cache miss
penalty and thus enables more effective packet processing.

Latency ShRing improves a workload’s latency if the asso-
ciated cores are saturated because packet service rate (number
of packets processed per second, denoted µ) is smaller than
packet arrival rate (number of packets arriving per second,
denoted λ). Latency is linear in the ring size s in this case, as
queuing theory dictates that µ < λ implies fully occupied Rx
rings, which means every newly arriving packet waits for s−1
preceding packets to be processed. But in contrast to privRing,
where each core has its own default-sized ring, shRing shares
each such ring between N cores, so the “effective” ring ca-
pacity that each core experiences is s/N, which means the
latency proportionally becomes 1/N smaller (recall that we
assume no pathological core imbalance).

Moreover, whenever shRing improves throughput, it also
improves latency, as this throughput improvement stems from
making the per-packet processing time (Pt) shorter. Notably,
if shRing’s shorter Pt transforms the overall service rate from
slower than arrival rate (under privRing) to faster (µ > λ

occupiedvacant
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Figure 4: PrivRing (private Rx rings) vs. shRing (shared Rx ring)
with N = 3 completion rings.

instead of µ < λ), queuing theory says that Rx ring occu-
pancy drops from fully to barely occupied. Namely, latency
drops sharply, essentially becoming O(Pt) with shRing in-
stead of O(Pt × s) with privRing. This shRing property under-
lies Figure 2g.

4.2 Synchronization with Completion Rings
In principle, N cores may share a receive ring by syn-
chronously accessing the ring’s head. But this approach cre-
ates a synchronization bottleneck [9, 22, 26, 80, 90]. ShRing
sidesteps this problem by reusing RSS to spread incoming
packets between different sharing cores (in addition to spread-
ing them between different rings, which is the usual role
of RSS). So when the NIC stores incoming packets in a
shared ring, it communicates to each of the N sharing cores
which packets belong to that core via a per-core completion
ring (CR), as depicted in Figure 4.

A CR is a circular array in host memory. There are N CRs
associated with each shared ring R: one for each core C that
shares R. The CR stores indexes of R’s packet descriptors,
specifying which descriptors are ready to be processed by C.
Similarly to descriptor rings, a CR has head/tail entries whose
indexes reside in NIC memory. When the NIC stores in R an
incoming packet P that is mapped to core C, it writes the index
of P’s descriptor to the tail of C’s CR and advances this tail.
To receive packets, C polls its CR head awaiting notification
about the next available packet in R. When C removes this
packet from R, it advances its CR head.

Thus, per-core CRs allow cores to poll without synchroniz-
ing with their peers. CRs negligibly increase the I/O working
set size, as a CR entry occupies only a single cacheline (for
storing metadata about the associated packet, such as size and
header offsets). Nonetheless, CRs do not obviate the need for
synchronization when a core reposts a descriptor for the NIC
to consume. RxList and RxArr address this synchronization
problem in different ways.

NIC Support Recent NVIDIA NICs already support asso-
ciating multiple CRs with a shared Rx ring as part of a shared
receive queue (SRQ) buffers feature [37, 61]. The motiva-
tion for this feature is reducing DRAM pinning for RDMA
(see §7), as opposed to shRing’s goal of improving throughput



and latency for Ethernet.
We expect support for Ethernet Rx ring sharing among

CRs to become widely available in the future, because it is
included in the infrastructure datapath function (IDPF) spec-
ification [17] and the Open Compute Project NIC specifica-
tion [18], which are proposed industry standards for network
device interfaces.

4.3 Array Ring Sharing (RxArr)
In the baseline privRing, each core C processes and reposts
descriptors of its private ring in array order, one after the
other. Namely, after C processes a descriptor Di, it reposts Di
by advancing the head of the ring past Di to Di+1, thereby
indicating that Di can be reused by the NIC to store some
other incoming packet in the future.

In contrast, RxArr shRing implements a ring array that
is shared between N cores. It therefore cannot automatically
advance the ring’s head in this way, as Di might become ready
for reuse before its k preceding descriptors {D j} j=i−1

j=i−k . For
example, if they were assigned to cores different than C and
require a longer processing time as compared to Di. Or if RSS
happened to assign all of them to some other core C′, which
must now work harder than C to catch up.

RxArr must thus guarantee that the NIC is notified that Di
can be reused only when all preceding descriptors are also
ready for reuse. For this purpose, RxArr maintains a bitmap
with a bit per descriptor, tracking which ring descriptors be-
tween head and tail have been processed and made available
for reuse. After core C consumes Di and re-arms it with a
new empty buffer, C (1) atomically sets bit i in this bitmap,
(2) consults the bitmap to find the maximal contiguous se-
quence of descriptors available for reuse beginning at the head
{D j} j=maxContig

j=head , and (3) atomically clears the corresponding
bits and advances the head past them.

The drawback of RxArr is its synchronization overhead, as
its bitmap is a shared and frequently updated data structure
that requires core coordination. Also, RxArr is suboptimal in
that it delays the reuse of descriptors made ready by some
cores, if prior descriptors have not yet been processed by other
cores. Conceivably, packet loss might occur under RxArr
despite available CPU and buffer capacity. In the privRing
baseline, in contrast, ready descriptors reside in different rings
and so the NIC can reuse them as they become available.

Listing 1 shows the RxArr receive function, which de-
queues a batch of packets for processing. It receives a shared
descriptor ring (sd_ring), the calling core’s CR (c_ring
completion ring), and an output array of packet pointers
(pkts) of length len. It returns the number of received pack-
ets. Lines 10–15 poll the CR to find the location of a ready
descriptor assigned to the calling core and store the descrip-
tor’s buffer in the output array, replacing this buffer with a
new one. Lines 16–22 mark received descriptors in the shared
bitmap (sdr->bitmap) while batching updates within 64-bit

1 #define BIT(x) (1 << ((x) & 63))
2 #define WORD(x) ((x) >> 6)
3 #define ISSET(bmp, x) \
4 (bmp[WORD(x & (bmp->size - 1))] & BIT(x))
5 int shRing(sd_ring *sdr, c_ring *cr,
6 void **pkts , int len) {
7 int rcvd = 0, lidx = -1;
8 uint_64t lbits = 0
9 while (rcvd < len) {

10 c_ring_ent *cre = get_cre(cr);
11 if (cre == NULL)
12 break;
13 int idx = cre->idx;
14 pkts[rcvd++] = sdr->desc[idx].buf;
15 sdr->desc[idx].buf = alloc_buf();
16 if (lidx == -1) lidx = WORD(idx);
17 else if (lidx == WORD(idx)) {
18 atomic_or(&sdr->bitmap[lidx], lbits);
19 lidx = WORD(idx);
20 lbits = 0;
21 }
22 lbits |= BIT(idx);
23 }
24 if (rcvd == 0) return 0;
25 if (lbits != 0)
26 atomic_or(&sdr->bitmap[lidx], lbits);
27 cr->ci += rcvd;
28 *cr->doorbell = cq->ci;
29 lock(sdr->lock);
30 while (ISSET(sdr->bitmap , sdr->ci) != 0) {
31 setb = ffs(~sdr->bitmap[WORD(sdr->ci)]);
32 atomic_clear(&sdr->bitmap[WORD(sdr->ci)],
33 setb - 1);
34 sdr->ci += setb - 1;
35 }
36 *sdr->doorbell = sdr->ci;
37 unlock(sdr->lock);
38 return rcvd;
39 }

Listing 1: RxArr shared ring receive code.

words. This is done using atomic instructions, as other cores
may be concurrently setting/clearing other bits in the bitmap.
Line 24 handles the corner case of an empty CR. Lines 25–
26 handle the remaining accumulated bitmap updates after
exiting the loop. Lines 27–28 ring the CR’s doorbell.

Lines 29–37 identify the maximal contiguous sequence
of descriptors beginning at the ring head that is available
for reuse, notifying the NIC about them. These operations
are performed under a lock to guarantee the atomicity of
(1) inspecting and modifying the bitmap and of (2) notifying
the NIC. Line 31 uses the find-first-set instruction to identify
the contiguous set bits. Lines 32–33 atomically clear them.
Finally, Line 34 advances the ring’s head (consumer index,
sdr->ci) accordingly, and Line 36 writes the updated head
to the shared ring’s doorbell.

4.4 Linked List Ring Sharing (RxList)
RxList is a shRing design that alleviates RxArr’s bitmap co-
ordination problem, eliminating the requirement to repost
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descriptors in array order. To this end, RxList represents the
empty packet buffer descriptor queue as a linked list. The
NIC correspondingly follows list order when storing incom-
ing packets. The list itself is overlaid on the Rx descriptor
array, with each descriptor holding a “next” field pointing to
the next list item. (Linked list functionality is part of the SRQ
feature [7].) Initially, each descriptor points to the subsequent
descriptor in the array. But as packet processing occurs and
cores process and repost descriptors out of array order, the
descriptor order in the list changes. We denote the first and
last descriptors in the empty descriptor list as hwHead and
hwTail, respectively, to distinguish them from the “head” and
“tail” used in the rest of the paper to describe the first and last
descriptors holding packets.

Figure 5a depicts RxList’s structure using three cores shar-
ing a single Rx ring. Observe that RxList’s descriptor ring
entries are not contiguous: there are multiple non-vacant de-
scriptors in the array between hwHead and its successor va-
cant descriptor in the list, which is impossible in an array-
based design. The figure also shows dashed links between
non-vacant descriptors. These represent the order in which
these descriptors were filled by the NIC, i.e., their order in
the list when they were vacant.

We now detail RxList’s receive flow, whose code is shown
in Listing 2. The function’s inputs and outputs are the same
as RxArr’s receive function. Lines 5–10 batch packets for pro-
cessing exactly as in RxArr: the completion ring is polled to
find the location of ready descriptors, each such descriptor’s
buffer is stored in the packet output array, and the descrip-
tor’s buffer is replaced with a new buffer. Lines 11–13 are
unique to RxList: they link dequeued descriptors one after the
other, creating a linked list that will eventually be appended
to the tail of the empty descriptor list. Lines 15–17 are again
standard functionality. First, the case of an empty completion
ring is checked, and then the core’s completion ring head
(denoted ci, or consumer index) is updated, including a noti-
fication to the NIC via a doorbell MMIO write. Lines 18–24
are again new to RxList. They lock the shared descriptor ring
to atomically (1) append the new list created in lines 11–13
after the tail of the list and (2) notify the NIC, via a doorbell

1 int ll_recv(sd_ring *sdr, c_ring *cr,
2 void **pkts , int len) {
3 int idx, rcvd = 0, myhead , *iptr = NULL;
4 while (rcvd < len) {
5 c_ring_ent *cre = get_cre(cr);
6 if (cre == NULL)
7 break;
8 idx = cre->idx;
9 pkts[rcvd++] = sdr->desc[idx].buf;

10 sdr->desc[idx].buf = alloc_buf();
11 if (iptr == NULL) myhead = idx;
12 else iptr ->next = idx;
13 iptr = &sdr->desc[idx];
14 }
15 if (rcvd == 0) return 0;
16 cr->ci += rcvd;
17 *cr->doorbell = cq->ci;
18 lock(sdr->lock);
19 int prevtail = sdr->hwTail;
20 sdr->desc[prevtail].next = myhead;
21 sdr->hwTail = idx;
22 sdr->ci += rcvd;
23 *sdr->doorbell = sdr->ci;
24 unlock(sdr->lock);
25 return rcvd;
26 }

Listing 2: RxList (linked list) shared ring receive code.

 0
 40
 80

 120
 160
 200

1:1 1:2 1:4 1:8

sharing ratio (rings:cores)

-1% -33%
-60% -76%

(a) throughput
[Gbps]

 0
 3
 6
 9

 12
 15
 18

1:1 1:2 1:4 1:8

array
linked list

-3%
60%

2.5x

4.2x

(b) NIC per-packet
processing time [µs]
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write, of the number of descriptors with empty buffers that
are appended to the list. Finally, line 25 returns the number
of received packets.

Prefetching Problem We find that RxList neutralizes de-
scriptor prefetching, an important NIC performance optimiza-
tion. Because descriptor rings are typically stored contigu-
ously, the NIC reads sequences of contiguous descriptors in a
single PCIe read transaction and caches valid descriptors in
NIC memory to improve throughput and reduce latency for
subsequent packets. When descriptors are linked out of array
order, the NIC fails to find the next descriptor on the list in its
on-NIC cache, resulting in more descriptor DMA reads being
required.

Effective descriptor prefetching is critical for high PCIe-
based NIC performance [70], and even more crucial for
shRing. In privRing, a descriptor cache miss on some ring



does not stall incoming traffic destined to other rings, but with
shRing there are fewer rings and so more traffic is stalled.

To demonstrate this effect, we evaluate the performance
of various descriptor ring to core sharing ratios. We com-
pare RxList to RxArr, in which the NIC follows descriptor
array order when storing packets. We run the synthetic NF
(from §2.3) on all cores and try to process traffic at line rate.

Figure 6a shows the throughput achieved by both designs.
When there is no sharing, then RxList, RxArr, and privRing
(not shown) perform similarly (≈ 2%). This is expected since
in this case, all approaches maintain ordering within the single
descriptor ring. However, as we decrease the ring to core
ratio, linked list descriptors become reordered and RxList’s
throughput declines sharply as sharing increases: 33% for 1:2
sharing ratio and 76% for 1:8 sharing ratio.

Figure 6b shows how costly out-of-order descriptors are,
motivating RxArr. Specifically, we report the NIC’s internal
packet processing time, and see that for linked lists this time
grows as more cores share a descriptor ring: from 3.7 µs at 1
core per ring to 16.3 µs at 8. In contrast, RxArr performance
remains the same regardless of the sharing ratio.

Prefetching Solution We propose batched RxList, a shRing
design that obtains RxList’s resiliency against pathological
core overload conditions without damaging the NIC’s per-
formance. Batched RxList amortizes the cost of locking and
descriptor reordering in RxList by batching packets to de-
scriptors. In this design, depicted in Figure 5b, each RxList
descriptor points to a buffer that can hold multiple packets.
For each RxList, the NIC stores new packets destined to a
core via the same descriptor used to store previous packets
for that core, provided that room remains in the descriptor’s
packet buffer. Only once this descriptor “fills up” will the NIC
consume a new descriptor from the list and start storing in-
coming packets for that core in the new descriptor’s buffer. To
perform this batching, the NIC caches the last Rx descriptor
used for each CR associated with the RxList. The NIC thus
effectively maintains per-core “mini hwHeads” pointing to
each core’s current descriptor.

The benefit of the batched RxList design is twofold. From
the NIC’s perspective, batching packets in descriptors and
caching the descriptors reduces the importance of descriptor
prefetching, as packets destined to a core experience a single
cache miss per batch. From the cores’ perspective, batching
reduces RxList synchronization, as locking the RxList to re-
post a descriptor is now guaranteed to occur only once per
batch, instead of potentially once per packet.

Although recent NICs support batching multiple packets in
a single large descriptor buffer [3], batched RxList requires
NIC ASIC modifications to support a list consisting of such
descriptors. Therefore, we cannot evaluate batched RxList.
We present this design to underscore that RxList’s tradeoffs
are likely not fundamental and are caused by current NIC
ASIC limitations, which can be fixed.

4.5 Dynamic ShRing
We propose a dynamic approach that switches between
privRing and shRing during run time, depending on which
architecture is more beneficial at the moment. Our goal is
to disable shRing if the workload experiences pathological
core overload or if it is not bottlenecked on I/O-related cache
misses. We describe the heuristic we currently use to iden-
tify these conditions. We leave improving the precision and
robustness of the heuristic for production use to future work.

Pathological Overload Pathological overloaded conditions
can make overloaded cores monopolize ring descriptors. If
continuous, high per-packet processing time differences are
such that the packet service rate of overloaded cores is smaller
than their packet arrival rate, queuing theory dictates that the
Rx ring eventually becomes fully occupied with their packets.
If incoming traffic is chronically imbalanced, large batches of
packets destined to overloaded cores can arrive and occupy
most if not all the descriptors.

In both of the above scenarios, overloaded cores invoke
their ring’s receive function less frequently than underloaded
cores. This is clearly the case for cores overloaded due to high
per-packet processing time, but also happens if overload is
due to incoming traffic imbalance. In this case, an overloaded
core’s receive call produces a large batch of packets, which
takes the core longer to process before returning to the ring
to dequeue more packets. We detect overloaded cores based
on this behavior, as explained below.

I/O-Related Cache Miss Significance Recall that under
non-pathological conditions, a workload will benefit from
shRing if (1) its I/O working set with privRing exceeds the
LLC DDIO capacity and (2) the penalty of the resulting cache
misses is non-negligible (§4.1). We associate (1) with high
memory bandwidth utilization and (2) with high networking
throughput.

Heuristic We measure throughput, memory bandwidth, and
time between subsequent calls to the receive function and
record the results in a sliding window of 16 entries. When
more than half of throughput and memory bandwidth mea-
surements exceed a predefined threshold while no core is over-
loaded (calls receive infrequently compared to other cores),
we switch from privRing rings to shRing rings. To switch back
from shRing to privRing, we wait until 7

8 of measurements
are below the threshold

To switch between privRing and shRing, we pre-program
two sets of RSS tables, which are NIC data structures used
to steer incoming packets to descriptor and completion rings
based on packet headers. Each RSS table set points to its own
set of rings, i.e., privRing and shRing. Then, based on the
heuristic’s decision, we update NIC steering rules to redirect
packets to the appropriate RSS table set. After switching,
before we begin polling the new rings for packets, we drain
remaining packets from the previous ring set.



4.6 Implementation
Our implementation of RxArr and RxList targets 100 GbE
NVIDIA NICs with unmodified ASICs. We initially relied on
firmware patches to expose ring sharing mechanisms, origi-
nally aimed for InfiniBand RDMA (see §7), for Ethernet use.
However, NVIDIA NIC firmware now makes these mecha-
nisms generally available.

We implement our designs with 2039 lines of code (LOC)
in the NVIDIA DPDK driver and only 137 LOC in DPDK’s
core. We leverage DPDK’s command line driver options to
enable the desired ring sharing mechanism and to specify how
many cores share each ring. This approach enables unmodi-
fied DPDK-based applications to benefit from shRing.

Dynamic shRing is implemented in a dedicated thread
that runs every 10 ms on a separate core which polls Intel
PCM [39] counters for PCIe generated memory bandwidth
and NIC byte and packet counters. We expose PCM coun-
ters through a library that we link with DPDK; the library
is 116 LOC and the code using it in DPDK is 330 LOC. As
the threshold for switching from privRing to shRing, we use
throughput greater than 170 Gbps, memory bandwidth greater
than 25 GiB/s, and the standard deviation between calls to Rx
functions being at most 32x larger than the median (where
32 is the maximum packet batch that shRing’s Rx functions
can return). We experimentally find that these values provide
good results for the NFs we tested.

5 Evaluation

We evaluate shRing’s effectiveness using synthetic mi-
crobenchmarks as well as NAT and LB macrobenchmarks.
We measure the gains obtained with shRing’s efficient I/O
working set utilization in both non-pathological and patholog-
ical conditions (§4.1) under 200 GbE load.

5.1 Methodology
Experimental Setup Our setup consists of two Dell Pow-
erEdge R640 servers, connected back-to-back via two pairs
of 100 GbE NVIDIA ConnectX-5 NICs with pause frames
disabled. One server is the evaluated system and the other
is the load generator. Both servers have 16-core 2.1 GHz
Xeon Silver 4216 CPUs, 128 GiB (=4x16 GiB) 2933 MHz
DDR4 memory, and a 22 MiB LLC that consists of 11 ways.
They run Ubuntu 18.04 (Linux 5.4.0) with hyperthreading
and Turbo Boost disabled. The kernel is configured to isolate
CPUs from the OS scheduler, use 1 GiB hugepages, disable
power saving states, and disable microarchitectural side chan-
nel mitigations.

On the load generator machine, we run the stateless Cisco
T-Rex packet generator [16], which we modify to improve
latency measurement accuracy from 10–100µs to 1µs [81].
Unless specified otherwise, we use default application set-
tings: 1024 descriptor Rx and Tx rings and 2 DDIO LLC
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Figure 7: Normalized performance of shRing to privRing for NFs
with varying memory intensity: shRing/8 improves performance in
all cases. (Labels show percentage of NFs in quadrant.)

ways, and we run application logic on all 16 of the available
CPU cores—8 cores per NIC. All the results presented are
trimmed means of ten runs; the minimum and maximum are
discarded. The standard deviation is always below 5%.

Measurement Tools We measure cycles per packet by mod-
ifying applications to record cycle counters, cache hit rate
using Linux perf, Tx ring occupancy by comparing comple-
tion ring producer and consumer indexes, PCIe latency using
NVIDIA Mellanox Neo-host [67], and memory bandwidth
and PCIe hit rate using Intel PCM [39].

Ring Mechanisms We compare between privRing; non-
dynamic array ring sharing (RxArr) between 8 cores—the
maximum possible on a CPU with 16 cores and 2 NICs—
which we denote “shRing/8;” and a small privRing configura-
tion whose aggregate descriptor count equals that of shRing/8,
i.e., 128 entries per ring when shRing/8 uses 1024 entries per
RxArr. We remark that small privRing is impractical since it
imposes loss when traffic is bursty, as shown in §3. We show
it for a thorough comparison between privRing and shRing.

5.2 Non-Pathological Conditions
We show the benefits of using shRing under high load with-
out pathological core overload conditions. Specifically, we
evaluate (1) synthetic NFs with varying memory intensity and
cache pressure; (2) NAT and LB performance; and (3) MICA
key-value store performance.

For NFs, we use large 1500B UDP packets sent at 200
Gbps to stress the I/O working set, and select packet 5-tuples
at random to spread the load across cores.

Memory Intensity To explore shRing performance with
NFs of various memory intensity, we run FastClick’s synthetic
WorkPackage module [8] which receives a packet, performs
routing, followed by a number of random memory reads from
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a buffer, and then sends the packet out. We modify WorkPack-
age to optionally read or overwrite packet payload.

We test 60 configurations: randomly reading 1, 2, 4, 8,
or 12 times from a 1MiB, 10MiB, 20MiB, or 40MiB buffer
(corresponding to L1, L2, LLC, and larger than LLC sizes),
while packet payload is either untouched, read, or overwritten.

For each configuration, we plot shRing throughput, latency,
and cycles per packet normalized to privRing; Figure 7 shows
the results. We find that throughput and latency improve with
descriptor sharing ratio: shRing/8 obtains the best throughput
and latency followed by shRing/4 and then shRing/2. More-
over, shRing/8 always outperforms privRing (all are above the
horizontal line), while shRing/4 and shRing/2 underperform
privRing for 54% and 38% of the most memory intensive con-
figurations, respectively. Exploring the configurations where
shRing/2 and shRing/4 are less successful than privRing, we
find that they consist of 3/16 and 11/16 NFs that read packet
payload, and 5/16 and 6/16 configurations that overwrite pay-
load, for shRing/2 and shRing/4, respectively.

Workload Cache Footprint We explore shRing effective-
ness as the workload’s cache footprint grows. We use the
aforementioned synthetic NF with 1–16 random memory ac-
cesses per packet in a 40 MiB array. Figure 8 shows the re-
sults. ShRing mitigates I/O working set induced cache misses,
improving application cache hit rates by up to 2.1x, which
translates to up to 13% higher throughput and up to 13.1x
lower latency. As the workload’s cache footprint grows, so
does CPU processing time per packet, so eventually cores
exceed the CPU cycle budget needed for line rate processing.
Both throughput and latency degrade as a result. As the num-
ber of processed packets thus decreases, the I/O working set
induced cache stress decreases too, and so the gap between
cache misses per packet in privRing and shRing shrinks.

NAT and LB We use two stateful FastClick NFs as mac-
robenchmarks: NAT and LB, which cache up to 10M flows
using per-core cuckoo hash tables. NAT consistently remaps
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Figure 9: LB and NAT performance at 200Gbps load.

and rewrites incoming and outgoing packet IP packet headers.
LB matches each flow with one of 32 destination servers,
maintaining the match for each flow and making new matches
with a round-robin policy. NAT is more memory intensive
than LB, as it uses two cache entries per flow (one for each
direction) while LB uses only one

We show results with a load of 200 Gbps. Results with
speeds greater than 170 Gbps are similar, while lower speeds
show no difference in throughput and less than 5 µs in latency
in favor of privRing due to the synchronization overhead of
shRing. The results we show are for the default Rx ring size
(i.e, 1024), results for other ring sizes are similar in nature.

Figure 9 depicts the resulting (a) throughput, (b) latency,
(c) ring occupancy, (d) PCIe (DDIO) miss rate, and (e) mem-
ory bandwidth. The results show that shRing/8 outperforms
privRing in throughput and latency, which is consistent with
previously presented microbenchmarks. This happens be-
cause at high offered load the I/O working set starts con-
tending with the CPU for LLC space and memory bandwidth,
which slows CPU packet processing. CPU slowdown, in turn,
causes ring occupancy to grow, which increases latency (as
explained in §2.3).

We expect small privRing to perform similarly to shRing/8,
and indeed this is the case for LB, but surprisingly small
privRing NAT performance is worse than shRing. For NAT,
small privRing has a notably lower DDIO hit rate and higher
ring occupancy. We speculate that the root cause is that shRing
reposts buffers slower as it waits for other cores to make
progress, and therefore its working set is slightly smaller
because less buffers are exposed to I/O.

ShRing achieves high performance because it shrinks the
I/O working set size to fit in the default DDIO portion of
the LLC (i.e., two LLC cache ways). When disabling DDIO,
namely forbidding NIC DMA writes from allocating ways
within the LLC, all ring types achieve only 150 Gbps through-
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Figure 10: ShRing benefits the MICA key-value store with large
I/O working sets, non-pathological load imbalance, and high load.

put and 1.3 µs latency, which is 3% and 27% lower than
privRing and shRing/8 with default DDIO (not shown in the
figure). When assigning all LLC ways to DDIO, privRing per-
formance matches shRing for LB, but it is insufficient for the
more memory intensive NAT application, which uses twice
as much state and whose throughout improves by less than
5% (also not shown).

Key-Value Store We use the MICA key-value store [62] to
show that shRing is applicable beyond NFs and to highlight
how workload conditions impact shRing’s effectiveness. We
run MICA on 8 cores using a single 100GbE NIC, with 128 B
keys and 1KiB values.

Figure 10a shows the results of a workload with 95% set op-
erations, uniformly distributed among all cores, at the highest
possible request rate. This workload satisfies the conditions
that make shRing beneficial (§4.1)—i.e., (1) no pathologi-
cal core overload, (2) a large I/O working set, and (3) non-
negligible penalty of I/O-related cache misses. ShRing im-
proves MICA throughput by 12% and reduces latency by 52%
in this workload; small privRing shows the potential through-
put gain from reducing the I/O working set, without shRing’s
synchronization cost.

Figure 10b changes the workload’s traffic spread, making
it imbalanced (Zipf distribution of skewness 0.99). Conse-
quently, shRing reduces throughput by 1% over privRing
but still improves latency by 50%. Figure 10c shows the ini-
tial workload but with 128B values, which makes the I/O
working set small. ShRing makes no throughput improve-
ment and increases latency by 11%. We obtain similar results
when lowering the request rate of Figure 10a’s workload (not
shown). In both these cases, shRing adds synchronization
overhead which is not offset by I/O working set related im-
provements, either because the I/O working set was small to
begin with (Figure 10c) or because the penalty of I/O-related
cache misses is negligible (low load).

5.3 Pathological Conditions
This section demonstrates shRing’s sensitivity to patholog-
ical core overload, where one of the shared ring’s cores is
continuously overloaded compared to the rest. We evaluate
shRing/8, referred to as “shRing” here, as well as dynamic
shRing/8 (denoted “dshRing”) and its ability to gracefully fall
back to privRing in pathological conditions. We evaluate two
causes for pathological conditions: variability in processing
and variability in incoming packet distribution among cores.
We also evaluate NAT and LB throughput when offered load
switches from non-pathological to pathological over time.

Processing Variability In this experiment, we choose a tar-
get core per NIC and control its processing speed by varying
the number of memory accesses it performs per packet while
all other cores run the synthetic workload described in §2.3.

Figure 11a depicts the resulting throughput. When the
target core’s packet processing is fast, shRing and dshRing
throughput is 12% higher than privRing, but as the core’s
processing slows down, shRing throughput declines to 58%
lower than privRing. In contrast, dshRing notices that one core
is slowing down shRing and switches to privRing, thereby
avoiding performance degradation.

Figure 11b explains the observed throughput, by show-
ing the time shRing Rx descriptors wait for co-sharing core
bitmap updates before being handed back to the NIC. We
present only shRing and dshRing, because privRing does not
have such delays. In shRing, slow processing on the target
core can delay co-sharing cores from making their processed
Rx descriptors available for NIC reuse. This effect is negligi-
ble when the target core makes less than 100 memory accesses
per packet, but subsequently, descriptor wait time increases
dramatically (up to 257 µs) and throughput decreases.

Traffic Variability Here, we choose a target core per NIC
and vary the percentage of packets directed to it up to 30%.
All cores run the synthetic workload. We direct 64 B packets
at the target core and 1500 B packets at the others, so that
even when receiving 30% of the packets, the target core’s
incoming traffic is < 3% of total incoming throughput. This
means that in principle, the target core’s behavior should have
negligible effect on overall throughput.

Figure 12a shows the throughput in practice. When the
packet load on the target core is less than 15%, shRing out-
performs privRing and dshRing’s heuristic correctly enables
shRing. But as load exceeds 15%, the targeted core becomes
overloaded and so shRing throughput declines by up to 54%.
In contrast, privRing throughput declines by only 3%, since
other cores are not affected. DshRing’s heuristic identifies
when the achieved throughput is too low and that it will not
be improved by shRing, and thus switches to privRing.

Figure 12b shows that as with processing variability,
shRing’s throughput decreases because the unloaded cores’
Rx descriptor reposting is delayed by the overloaded core.
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Figure 12: When variability manifests as increased rate of packets targeting
one specific core (x axis), at some point, it prolongs the latency of peer core
descriptor reposting (b); at this point, performance degrades (a) as the target
core processing can no longer match the volume of incoming traffic (c).

Figure 12c presents the ratio of packets successfully pro-
cessed by the target core out of all packets. While shRing
maintains the target core’s ratio of outgoing to incoming pack-
ets, the cost is that as more packets target this core, shRing
delays receiving on other cores. This results in drops of the
1500 B packets when the target core is overloaded, and thus
throughput declines. In contrast, privRing drops excess pack-
ets that exceed the target core’s processing capacity, and as a
result it has at most 17% outgoing packets on the target core.

Handling Variability with Dynamic ShRing We run an
experiment where the incoming load switches from non-
pathological to pathological after 20 seconds. Figure 13 shows
NAT and LB throughput sampled every second. DshRing ini-
tially uses privRing, but as load increases, it identifies high
throughput and memory bandwidth with no overloaded cores
and switches to shRing. At 20 seconds, we reconfigure the
load generator to send a pathological load, which overloads
cores and decreases throughput. DshRing identifies the drop
in throughput and switches back to privRing. Consequently,
dshRing achieves good performance in both.

6 Kernel-Based TCP Sockets
Our implementation and evaluation focus on NFV workloads,
which typically bypass the operating system (OS) network-
ing stack and the socket abstraction. This section explores
the potential benefit to socket-based TCP applications from
deploying shRing in the Linux networking stack.

Concerns about the effectiveness of a shRing-based NIC
OS driver are that (1) application working sets may be
too large for shRing’s improved DDIO utilization to mat-
ter and (2) even if not, small private rings might not lead to
packet loss in the Linux kernel, as opposed to with DPDK.

Because our shRing prototype is DPDK-based, we can-
not directly evaluate shRing in the Linux kernel. We there-
fore use “small privRing” as a proxy, to show the benefit of

reducing the I/O working set in the Linux kernel. We run
Netperf [56] microbenchmarks to show that: (1) smaller I/O
working sets can improve performance of a socket-based
application and (2) 1Ki-sized rings are necessary to handle
burstiness in the kernel.

Pros of Smaller I/O Working Sets We measure Netperf
TCP request-response throughput (sum of Rx and Tx). We
use 16 cores and two NICs with two threads per core (one per
NIC). For symmetry, we use the same ring size on both sides.
In all experiments, the CPU is not the bottleneck.

Figure 14a shows the throughput obtained for 64KiB re-
quests and various response sizes. In this setting, small rings
outperform large rings by up to 10%. But when the size of the
request and the response are equal (Figure 14b), the results
become less conclusive, e.g., for 1KiB messages throughput
is almost the same for both ring sizes, and for 4KiB messages,
the small ring’s throughput is 5% less than the default.

Cons of Small Private Rings We measure Netperf TCP
stream throughput for various private ring sizes, with traffic
either directed at a single core or evenly spread among 8 cores.
Figure 15 (similarly to Figure 3) demonstrates that small rings
work well for multicore TCP traffic, as the spread of load curbs
the bursts each individual core/ring experiences. However,
a single ring smaller than 1Ki overflows and causes drops,
which cause TCP to back off and thus degrade throughput.

7 Related Work
Efficient LLC Utilization DDIO enabled platforms allow
NICs to access data faster via the relatively small LLC. Many
previous works, unrelated to ring sharing, proposed tech-
niques to improve DDIO efficiency: (1) using small private
rings to reduce the I/O working set [91]; (2) placing packets
in LLC slices closest to the target processing CPU core [29];
(3) eliminating interference between applications and I/O de-
vices when partitioning the LLC [96]; (4) placing only packet
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headers in the LLC to reduce LLC contention [34, 79, 83];
and (5) modifying CPUs to prefetch DDIO-written data into
mid-level caches and to invalidate data without writeback
when possible to conserve memory bandwidth [1]. We show
that small private rings are insufficient and propose a ring
sharing mechanism that is symbiotic with the last four tech-
niques.

Sharing Within a Core in Software Linux io_uring ”au-
tomatic buffer selection“ [19] lets applications pre-register
buffers and later consume these via read/recv system calls
for different file descriptors. Similarly, buffers posted to
shRing are pre-registered and later assigned to cores at packet
arrival time. But unlike io_uring, shRing operates between
software and hardware.

Sharing Within a Core in Ethernet NICs When a single
core and privilege level have multiple NIC rings, sharing their
buffers and CRs to conserve resources is desirable. For ex-
ample, SRIOV NICs expose a ring per VM on the hypervisor
to receive packets missing hardware virtual switching rules,
allowing the hypervisor to install matching rules [33, 77]. As
the number of VMs exceeds the number of cores, multiple
such rings must share a core. To optimize this, NVIDIA NICs

recently started sharing ring buffers and CRs within each
core [61] via the same firmware changes that we used, which
are now publicly available. ShRing, in contrast, shares rings
between cores.

Sharing Between Cores in RDMA RDMA applications
typically employ queue pairs (QPs) with dedicated buffers to
connect between endpoints—consuming GiBs of DRAM [85,
88]. Shared Receive Queues (SRQ), like shRing, decrease
memory use by sharing buffers. Whereas SRQ helps RDMA
applicability by fitting I/O buffers in server DRAM, shRing
improves performance by fitting I/O buffers in server LLC.

Sharing Between Cores in Integrated NICs Nebula [89]
is an on-chip integrated NIC design optimized for RPC work-
loads. Nebula, like shRing, fits the I/O working set within
the LLC. Whereas Nebula is applicable only for RDMA-like
hardware-terminated protocols, shRing is applicable to typical
general purpose Ethernet software network stacks.

8 Conclusions
Multicore systems with per-core Ethernet rings use too many
receive rings, creating memory pressure that hampers per-
formance. We show that shared receive rings alleviates this
problem despite the associated synchronization costs.
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and George Candea. Automated verification of network
function binaries. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
pages 585–600, 2022. https://www.usenix.org/c
onference/nsdi22/presentation/pirelli.

[77] Jiri Pirko and Scott Feldman. Ethernet switch device
driver model (switchdev).
https://www.kernel.org/doc/Documentation/n
etworking/switchdev.txt, 2015. Accessed:
2022-10-10.

[78] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
NIC offloads. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 18—-35, 2021.
https://doi.org/10.1145/3445814.3446732.

[79] Boris Pismenny, Liran Liss, Adam Morrison, and Dan
Tsafrir. The benefits of general purpose on-NIC
memory. In ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 1130—-1147,
2022.
https://doi.org/10.1145/3503222.3507711.

[80] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for
microsecond-scale networked tasks. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 325—-341, 2017.
https://doi.org/10.1145/3132747.3132780.

[81] Mia Primorac, Edouard Bugnion, and Katerina
Argyraki. How to measure the killer microsecond. In
Proceedings of the Workshop on Kernel-Bypass
Networks, pages 37––42, 2017.
https://doi.org/10.1145/3098583.3098590.

[82] Scott Rixner. Network virtualization: Breaking the
performance barrier: Shared I/O in virtualization
platforms has come a long way, but performance
concerns remain. ACM Queue, 6(1):36––44, January
2008.
https://doi.org/10.1145/1348583.1348592.

[83] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kostić, and Marco
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